Appl. No. 09/838,552 : | PATENT
Amdt. dated November 29, 2004
Reply to Office Action of July 29, 2004

Amendments to the Specification:

Please replace paragraph 2 on page 1 with the following amended paragraph:
CROSS-REFERENCES TO RELATED APPLICATIONS
Thié Continuation-in-part application is related to co-pending U.S. Patent
\Application No. ———— 09/838,550 (Attorney Docket 20181-51), filed April 18, 2001,
entitled “Method For Effective Biﬁary Translation Between Different Instruction Sets Using
Emulated Supervisor Flag And Multiple Page Tables;” U.S. Patent Application No. ———
09/838.532 (Attorney Docket 20181-50), filed April 18, 2001, entitled “Method for Fast

Execution of Translated Binary Code Utilizing Database Cache for Low-Level Code
Correspondence;” and U.S. Patent Application No. ———— 09/838,530 (Attorney Docket
20181-55), filed April 18, 2001, entitled “Method for Emulating Hardware Features of a Foreign

Architecture in a Host Operating System Environment” each of which is incorporated herein by

reference as if set forth in full in this documént.

Please replace paragraph 2 beginning on line 8 on page 4 with the following amended
paragraph:

Different approaéhes to maintaining preciSe exceptions are known in the art. For
example, some systems may create a “check point” in the code at which point the normal
operation of the system is suspended to save the current state. However, suspending the
execution is inherently undesirable if the system is to operate without degrading performance
compared to the foreign architecture. In alternative approaches, some systems may employ
“speculative execution” where all branches of a code sequence are executed and stored for later

use. However, this approach is results in an inefficient utilization of system resources.

Page 3 of 19



* Appl. No. 09/838,552 PATENT
Amdt. dated November 29, 2004
Reply to Office Action of July 29, 2004 .

Please replace paragraph 2 beginning at line 31 on page 7 with the following amended
paragraph:

Referring now to Figure 1, a host co-mputer system 100 based on explicit
parallelism and wide instruction words architecture with hardware assistance for efficient binary
translation is illustrated. Host compﬁter system 100 comprises a computer processing unit
(CPU) 102 and a memory management unit (MMU) 104. Host CPU 102 comprises/ one or more
execution units 106 and a call/return cache 108. Execution units 106 include logic to input and
retrieve address pairs from cache 108 to facilitate the execution of binary translated code. When
translating foreign code, execution units 106 input a foreign address to the call/return cache and
retrieve a corre_spbnding host address for use during execution of binary translated code. The
CPU 102 also includes a register file 110. Under software control, the registers are explicitly
renamed at compile time for holding temporary data or foreign data. The same foreign register
may be located in various host registers at run-time. MMU 104 includes logic to form a foreign
virtual memory space 116 and logic to form a host virtual memory space 118. The MMU 104
also includes a translation lookaside buffer (TLB) 120 designed to provide translation from
virtual to physical addresses and to provide coherence between foreign code in fdreign virtual
memory 116 and binary translated code in host virtual memory 118. Any access ef to foreign
memory is handled by TLB 120. The dual virtual memory spaces 116 and 118 are used and
maintain the content of the forei gn virtual memory in a consistent state with the foreign

architecture during foreign code execution.

Please replace paragraph 3 begihning on line 29 on page 6 and ending on page 7 line 9 with
the following amended paragraph:

In accordance with another embodiment of the present invention, a computer system employs a
register file for storing temporary values and foreign registers rather than fixed registers in
optimized binary translated code for preserving x86’s general-purpose registers. Rather than use
multiple register sets where one register set shadows the foreign architecture and another set as
working registers, the computer system uses a unified register file. The register file is organized
‘with an overlapping window with explicit register renaming of the foreign system’s registers.

The explicit renaming enables the optimizing translation processes (compilation) to aggressively

Page 4 of 19



Appl. No. 09/838,552 ' PATENT
Amdt. dated November 29, 2004
Reply to Office Action of July 29, 2004

optimize foreign code. During compilation, state information is saved at a plurality of recovery
* points in the bihary translated code. The saved information includes information that describes
which registers correspond to the general purpose registers of the foreign architecture and this

information is saved in external memory, e.g. on hard disk or in flash memory. Acéordingly,

there is no explicit hardware correspondence between the foreign register set and the host
registers. The exception handler in the host architecture maintains documentation showing
which registers must be used to restore the original foreign register content.

Please replace paragraph 3 beginning at line 32 on page 8 with the following amended
paragraph: _

FIG. 2 shows a block diagram of computer system 100 comprising host CPU 102
and MMU 104 together with hardware support for efficient and reliable execution of Binary
translated code. Through a software layer 268 206, CPU 102 operates to execute foreign code on
the host system. The process of decoding and semantic substitution is fulfilled in binary
translator software. Foreign code is maintained in foreign virtual space 116 while the host
processes are maintained in host virtual space 118. After semantic substitution for foreign
operations in terms of host operations, the intermediate representation is processed by an
optimizing binary translation process 202 to improve performance. Binary translation process
202 does not change the sequence of memory write instructions or, to be more speciﬁé, the
sequence in which memory write operations (storé operations) are performed is the same as in
the foreign code. Accordingly, memory write side effects coincide with the behavior expected
ona platform based on the foreign architecture. But to optimize performance, load operations
can be moved ahead of store operations and to avoid address conflicts, there is a dedicated
hardware buffer for address comparing (disambiguation memory). Maintaining the correct order
of side effects for load operations is achieved with the present invention as described more fully

below.

Replace paragraph 2 beginning at line 6 on page 15 with the following amended
paragraph:

By way of example, for the x86’s code sequence:
ADD ebx edx, [edi + 0x10]

Page 5 of 19



Appl. No. 09/838,552 PATENT
Amdt. dated November 29, 2004
Reply to Office Action of July 29, 2004

ADD ecx, esi

MOV [edi + 0x8], ecx

.CMP [edi + 0xc], esi

JNC Label

SUB edx, [edi + 0x14]
Label:

MOYV [ecx], edx

SRL esi, 1

Replace paragraph 1 beginning at line 10 on page 16 with the followmg amended
paragraph:

| The foreign code fragment shown above begins by performing an ADD operation. This
operation first obtains the value at a memory location identified by summing the contents of the
EDI register and a constant, 0x10. The value from memory is then added to the contents of the

l EBX-EDX register. This operation is emulated by the first two RISC-like instructions depicted
on the left. Specifically, in the host code, a load operation is executed to move the value stofed
in memory to a register R1. Then, an ADD,f operation adds the contents of register R1 to the
contents in the EDX register with the result stored in the EDX register and obtains condition
codes in the host register FLAGS in the host register file.

Replace paragraph 1 beginning at line 1 on page 18 with the following amended
paragraph:

2 SetlP; ADD r1, edx, r1; ST r2, [edi+0x8]; CMPnc r4, esi -> p[0]; CMP,f r4,esi, +3r6
- 3 SRL(fesi,1, r4&r5 SUB,fr1, r5, r1 & r3-r6 (~p[0])
4 SetlP; ST r1, [r2]

Replace paragraph 1 beginning at line 1 on page 18 with the following amended
paragraph:

The second point is described by the-samethis documentation because registers R1, R2
and R3 have been released by the host optimizing scheduler and then reused in further
calculations. After finishing execution of the code the documentation will have the

following contents:

Page 6 of 19



Appl. No. 09/838,552 PATENT
Amdt. dated November 29, 2004
Reply to Office Action of July 29, 2004

Replace paragraph 4 beginning at line 24 on page 15 with the following amended
paragraph:

1 LD [edi+ 0x10],r] #

2 ADD,frl,edx, edx @ & flags # ADD edx, [edi+ 0x10]
3 ADD,fecx, esi, ecx @ & flags # ADD ecx, esi

4 ST ecx, [edi + 0x8] # MOV [edi + 0x8], ecx
5 LD [edi+ 0xc], rl # '

6 CMP,frl, esi, flags # CMP [edi + Oxc]

7 CCTOLP flags|nc -> p[0] #

8 CT Label, p[0] # JNC Label

9 LD [edi + 0x14], rl #

10 SUB.f edx, rl, edx & flags # SUB edx, [edi + 0x14]
Label:

11 ST edx, [ecx] # MOV [ecx], edx

12 SRL.f esi, 1, esi & flags # SRL esi, 1

Please replace paragraph 2 beginning at line 4 on page 19 with the following amended
paragraph: -

After that real exception at operation "SUB" will occur. Such kind of exception
("diagnostic operand") is precise at the host platform and the whole third wide instruction won't
be executed. Then host exception handler 932 532 (Fig. 5) will be invoked. It takes wide
instruction address from the RPR register and extracts correspondent documentation for the
Recovery Point being addressed by the value of instruction pointer in the RPR register. On the
base of this documentation the exception handler determines a foreign operation which the

process of recovery process should be stared started from.

Replace paragraph 3 begihning at line 21 on page 20 with the fbllowing amended
paragraph: - _ |
Exception handler 532 invokes a dynamic binary translator 534. Dynamic binary
translator 534 may be the same as binary translator 203 or it may be a simplified version thereof.

When exception handler 532 invokes binary translator 534, the foreign code 520 is accessed

Page 70f19



Appl. No. 09/838,552 PATENT
Amdt. dated November 29, 2004 S
Reply to Office Action of July 29, 2004

beginning at the nearest recovery point, which in Figure 9 5, corresponds to instruction 524,
Using the run-time values, binary translator 534 regenerates sequential binary translated code as
indicated at 536. The first instruction in code sequence 536 corresponds to the recovery point,
that is, instruction 538. Execution proceeds to the instruction that would correspond to
instruction 518, which caused exception 530. If the exception, such as exception 948 540 re-
occurs, exception handler 532 will report the problem to the foreign exception handler which, if
not already exist in binary translated form, will be binary translated into the host code.
Otherwise, execution proceeds to the next control transfer operation and switches back to the
optimized binary translated code 510. It will be appreciated that any exception occurring
between Recovery Points requires that exception handler 532 begin interpreting foreign code 520
from a correspondent Recovery Point in the foreign code. Accordingly, the foreign context in °
optimized binary translated code must not be changed irretrievably between Recovery Points.
Thus, preliminary register information must be retained and the registers cannot be reused until
execution reaches a recovery point. The advantage of this method is that the dynamic binary
translator 534 eliminates the optimization by re-executing the code in a sequential manner. It
affords the opportunity to easily reconstruct the conditions that caused the exception in the

optimized code and restore the correct foreign context to the state just prior to the exception.

Page 8 of 19



	2004-12-02 Specification

